19 research outputs found

    CoopHash: Cooperative Learning of Multipurpose Descriptor and Contrastive Pair Generator via Variational MCMC Teaching for Supervised Image Hashing

    Full text link
    Leveraging supervised information can lead to superior retrieval performance in the image hashing domain but the performance degrades significantly without enough labeled data. One effective solution to boost the performance is to employ generative models, such as Generative Adversarial Networks (GANs), to generate synthetic data in an image hashing model. However, GAN-based methods are difficult to train and suffer from mode collapse issue, which prevents the hashing approaches from jointly training the generative models and the hash functions. This limitation results in sub-optimal retrieval performance. To overcome this limitation, we propose a novel framework, the generative cooperative hashing network (CoopHash), which is based on the energy-based cooperative learning. CoopHash jointly learns a powerful generative representation of the data and a robust hash function. CoopHash has two components: a top-down contrastive pair generator that synthesizes contrastive images and a bottom-up multipurpose descriptor that simultaneously represents the images from multiple perspectives, including probability density, hash code, latent code, and category. The two components are jointly learned via a novel likelihood-based cooperative learning scheme. We conduct experiments on several real-world datasets and show that the proposed method outperforms the competing hashing supervised methods, achieving up to 10% relative improvement over the current state-of-the-art supervised hashing methods, and exhibits a significantly better performance in out-of-distribution retrieval

    Everyone Can Attack: Repurpose Lossy Compression as a Natural Backdoor Attack

    Full text link
    The vulnerabilities to backdoor attacks have recently threatened the trustworthiness of machine learning models in practical applications. Conventional wisdom suggests that not everyone can be an attacker since the process of designing the trigger generation algorithm often involves significant effort and extensive experimentation to ensure the attack's stealthiness and effectiveness. Alternatively, this paper shows that there exists a more severe backdoor threat: anyone can exploit an easily-accessible algorithm for silent backdoor attacks. Specifically, this attacker can employ the widely-used lossy image compression from a plethora of compression tools to effortlessly inject a trigger pattern into an image without leaving any noticeable trace; i.e., the generated triggers are natural artifacts. One does not require extensive knowledge to click on the "convert" or "save as" button while using tools for lossy image compression. Via this attack, the adversary does not need to design a trigger generator as seen in prior works and only requires poisoning the data. Empirically, the proposed attack consistently achieves 100% attack success rate in several benchmark datasets such as MNIST, CIFAR-10, GTSRB and CelebA. More significantly, the proposed attack can still achieve almost 100% attack success rate with very small (approximately 10%) poisoning rates in the clean label setting. The generated trigger of the proposed attack using one lossy compression algorithm is also transferable across other related compression algorithms, exacerbating the severity of this backdoor threat. This work takes another crucial step toward understanding the extensive risks of backdoor attacks in practice, urging practitioners to investigate similar attacks and relevant backdoor mitigation methods.Comment: 14 pages. This paper shows everyone can mount a powerful and stealthy backdoor attack with the widely-used lossy image compressio

    A Cosine Similarity-based Method for Out-of-Distribution Detection

    Full text link
    The ability to detect OOD data is a crucial aspect of practical machine learning applications. In this work, we show that cosine similarity between the test feature and the typical ID feature is a good indicator of OOD data. We propose Class Typical Matching (CTM), a post hoc OOD detection algorithm that uses a cosine similarity scoring function. Extensive experiments on multiple benchmarks show that CTM outperforms existing post hoc OOD detection methods.Comment: Accepted paper at ICML 2023 Workshop on Spurious Correlations, Invariance, and Stability. 10 pages (4 main + appendix

    Tactical and Strategic Communication Network Simulation and Performance Analysis

    Get PDF
    We describe a framework for the efficient modeling and performance evaluation of large networks consisting of mixture of strategic and tactical components. The method emphasizes hierarchical, layered techniques that are fed parametric models at the lower level. In addition to the algorithmic structure, and some initial algorithms we describe an object oriented software architecture that is under development to support these algorithmic methods in a distributed environment

    Antibiotic use and prescription and its effects on Enterobacteriaceae in the gut in children with mild respiratory infections in Ho Chi Minh City, Vietnam. A prospective observational outpatient study.

    Get PDF
    BACKGROUND AND OBJECTIVES: Treatment guidelines do not recommend antibiotic use for acute respiratory infections (ARI), except for streptococcal pharyngitis/tonsillitis and pneumonia. However, antibiotics are prescribed frequently for children with ARI, often in absence of evidence for bacterial infection. The objectives of this study were 1) to assess the appropriateness of antibiotic prescriptions for mild ARI in paediatric outpatients in relation to available guidelines and detected pathogens, 2) to assess antibiotic use on presentation using questionnaires and detection in urine 3) to assess the carriage rates and proportions of resistant intestinal Enterobacteriaceae before, during and after consultation. MATERIALS AND METHODS: Patients were prospectively enrolled in Children's Hospital 1, Ho Chi Minh City, Vietnam and diagnoses, prescribed therapy and outcome were recorded on first visit and on follow-up after 7 days. Respiratory bacterial and viral pathogens were detected using molecular assays. Antibiotic use before presentation was assessed using questionnaires and urine HPLC. The impact of antibiotic usage on intestinal Enterobacteriaceae was assessed with semi-quantitative culture on agar with and without antibiotics on presentation and after 7 and 28 days. RESULTS: A total of 563 patients were enrolled between February 2009 and February 2010. Antibiotics were prescribed for all except 2 of 563 patients. The majority were 2nd and 3rd generation oral cephalosporins and amoxicillin with or without clavulanic acid. Respiratory viruses were detected in respiratory specimens of 72.5% of patients. Antibiotic use was considered inappropriate in 90.1% and 67.5%, based on guidelines and detected pathogens, respectively. On presentation parents reported antibiotic use for 22% of patients, 41% of parents did not know and 37% denied antibiotic use. Among these three groups, six commonly used antibiotics were detected with HPLC in patients' urine in 49%, 40% and 14%, respectively. Temporary selection of 3rd generation cephalosporin resistant intestinal Enterobacteriaceae during antibiotic use was observed, with co-selection of resistance to aminoglycosides and fluoroquinolones. CONCLUSIONS: We report overuse and overprescription of antibiotics for uncomplicated ARI with selection of resistant intestinal Enterobacteriaceae, posing a risk for community transmission and persistence in a setting of a highly granular healthcare system and unrestricted access to antibiotics through private pharmacies. REGISTRATION: This study was registered at the International Standard Randomised Controlled Trials Number registry under number ISRCTN32862422: http://www.isrctn.com/ISRCTN32862422

    One Loss for Quantization: Deep Hashing with Discrete Wasserstein Distributional Matching

    Full text link
    Image hashing is a principled approximate nearest neighbor approach to find similar items to a query in a large collection of images. Hashing aims to learn a binary-output function that maps an image to a binary vector. For optimal retrieval performance, producing balanced hash codes with low-quantization error to bridge the gap between the learning stage's continuous relaxation and the inference stage's discrete quantization is important. However, in the existing deep supervised hashing methods, coding balance and low-quantization error are difficult to achieve and involve several losses. We argue that this is because the existing quantization approaches in these methods are heuristically constructed and not effective to achieve these objectives. This paper considers an alternative approach to learning the quantization constraints. The task of learning balanced codes with low quantization error is re-formulated as matching the learned distribution of the continuous codes to a pre-defined discrete, uniform distribution. This is equivalent to minimizing the distance between two distributions. We then propose a computationally efficient distributional distance by leveraging the discrete property of the hash functions. This distributional distance is a valid distance and enjoys lower time and sample complexities. The proposed single-loss quantization objective can be integrated into any existing supervised hashing method to improve code balance and quantization error. Experiments confirm that the proposed approach substantially improves the performance of several representative hashing~methods.Comment: CVPR 202

    Defending Backdoor Attacks on Vision Transformer via Patch Processing

    No full text
    Vision Transformers (ViTs) have a radically different architecture with significantly less inductive bias than Convolutional Neural Networks. Along with the improvement in performance, security and robustness of ViTs are also of great importance to study. In contrast to many recent works that exploit the robustness of ViTs against adversarial examples, this paper investigates a representative causative attack, i.e., backdoor. We first examine the vulnerability of ViTs against various backdoor attacks and find that ViTs are also quite vulnerable to existing attacks. However, we observe that the clean-data accuracy and backdoor attack success rate of ViTs respond distinctively to patch transformations before the positional encoding. Then, based on this finding, we propose an effective method for ViTs to defend both patch-based and blending-based trigger backdoor attacks via patch processing. The performances are evaluated on several benchmark datasets, including CIFAR10, GTSRB, and TinyImageNet, which show the proposedds defense is very successful in mitigating backdoor attacks for ViTs. To the best of our knowledge, this paper presents the first defensive strategy that utilizes a unique characteristic of ViTs against backdoor attacks
    corecore